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In this paper, two factors that a!ect the behaviors of the non-linear normal modes
(NNMs) of conservative vibratory systems are investigated. The "rst factor is the base points
(which are equivalent to Taylor series expanding points) of the non-linear normal modes and
the second one is the normalization schemes of the corresponding linear modes. For
non-linear systems, in general only the approximated NNM manifolds are obtainable in
practice, so di!erent base points may lead to di!erent forms of NNM oscillators and
di!erent normalization schemes lead to di!erent forward and backward transformations
which in turn a!ect the numerical computation errors. Three di!erent kinds of base points
and two di!erent normalization schemes are adopted for comparison respectively. Two
examples of non-linear systems with two and three degrees of freedom, respectively, are
given as illustration. Simulations for various cases are made. The analysis and the simulation
results indicated that, the best base points are the abstract base points determined via the
linear normal mode, which would eliminate the third order terms containing velocity (for
cubic systems) or quadratic terms (for quadratic systems) in equations of the NNM
oscillators. A better invariance of the NNMs would also be maintained with such base
points. The best scheme of normalization is the norm-one scheme that would minimize the
numerical errors.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

In the early 1960s, the concept of NNM was developed by Rosenberg [1] for undamped
non-linear discrete vibratory systems. His work motivated much of interest in NNMs
thereafter; especially in the past decade, a lot of research work has been done to study the
behaviors of NNMs of non-linear vibratory systems by various methods. Essentially, these
methods fall into two categories: one is the use of one-dimensional manifolds to
approximate each of the NNMs and the other is the use of two (for non-internal resonant
cases) or 2k (internal resonant cases)-dimensional manifolds to approximate each of the
NNMs. For example, references [2}7] etc., belonged to the "rst category. Inspired by the
theory of invariant manifolds of dynamical systems, Shaw and Pierre [8] proposed a new
method which belongs to the second category. In their method, velocity as well as
displacement of some mass point are used as independent variables to express the NNMs.
This method is constructive locally and can be used to obtain the approximated NNMs of
conservative as well as damped systems. Both similar and non-similar normal modes can be
captured by the same procedure. For the applications of Shaw and Pierre's method, see also
references [9}11]. In reference [12], Chechin et al. discussed the restrictions of the
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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symmetries on the NNMs of the non-linear dynamical systems. For the NNMs of the
continuous medium systems, see references [13}15].
In this paper, following the NNM methodology presented by Shaw and Pierre [8], the

factors that in#uence the behaviors of NNMs of non-linear conservative vibratory systems
are investigated. For linear vibratory systems, the normal modes can be obtained exactly by
linear algebraic method. But for non-linear systems, in general, the exact closed-form
NNMs could not be obtained, only approximated NNMs are obtained by Taylor series
method. So the base points of NNMs, which correspond to the points about which the
Taylor series are expanded, would a!ect the forms and behaviors of NNM oscillators. On
the other hand, di!erent normalization schemes of the corresponding linear normal modes
would lead to di!erent forward and backward transformations, which in turn a!ect the
transfer relations of numerical errors. It is found that the best base points are the abstract
points determined via the corresponding linear normal modes, and the best normalization
scheme is the norm-one scheme. With such a choice, the third terms (for cubic systems) or
quadratic terms (for quadratic systems) containing the velocity would not appear in
equations of the NNMs oscillators. The qualitative properties of the non-linear modal
systems are kept well in accordance with the original systems and a better invariance of the
NNMs is maintained. At the same time, the numerical errors are not enlarged through the
forward and backward transformations.

2. NON-LINEAR NORMAL MODE METHOD

For describing the method more concisely, an example is combined with illustration. The
physical model to be considered here is a two-d.o.f. non-linear vibratory system [6, 9] as
follows:
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where k, p
�
, p

�
, q, � are parameters.

Via the NNM method [8], the non-linear normal modes can be approximated by
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where (u, v) are the modal co-ordinates, in other words, they are the co-ordinates of the base
points of the non-linear normal modes. The a

��
's and b

��
's are the NNMs' coe$cients.

In vector form, the forward transformation (from modal co-ordinates to physical
co-ordinates) is
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assembled with the individual NNMs. It should be noted that the coe$cients of the linear
terms in equation (3) are equivalent to the linear modal coe$cients.
The backward (inverse) transformation (from physical co-ordinates to modal

co-ordinates) is

w"Q(z)z"�Q
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(z)#Q
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where Q(z) is the inverse of M(w) in equation (3).
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For linear systems, the linear normal modes (LNMs) can be obtained exactly. So di!erent
base points or/and normalization schemes of the LNMs would lead to the same results, but
di!erently for non-linear systems, because only approximated NNMs can be obtained; so
di!erent base points of the NNMs or/and normalization schemes of the corresponding
LNMs would lead to di!erent results. Here the problems arise as to which base point
should be chosen and which normalization scheme is the best one? In the following, we
choose di!erent base points and di!erent normalization schemes for comparison.
According to the method of Shaw and Pierre, Xu et al. [9] obtained the non-linear

normal modal equations of system (1) as follows:
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where k, q, p
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are parameters of the original physical systems, a
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NNM coe$cients. Note that, in reference [9], the expressions of the coe$cients a
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,

a
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(i"1, 2) have some minor mistakes and the correct formulas can be obtained easily, that

are omitted here. When the parameters in equation (1) take the values p
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"g, p

�
"0, q"0,

�"0, model (1) degenerates to the example 2 of reference [8], and the corresponding NNM
oscillators results as follows:
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In the above analysis, the base points are chosen as (x
�
, y

�
), and the normalization schemes

are such that they set the "rst-component of each LNM to be one. For a convenient
comparison, such base points are called "xed-component base point. Note that the NNMs
discussed here are approximated to the third order only.

3. EFFECTS OF THE BASE POINTS ON THE NNMs

In contrast to the "xed-component base point of the NNMs chosen as above, two
alternative choices are made as follows.

3.1. BASE POINTS VIA THE PRINCIPAL COMPONENT OF LNMs

The base point is chosen as (u, v)"(x
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, y
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), i.e., in equation (2), set a
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N, N is the number of d.o.f. of the system considered and a
��
's are the linear modal

coe$cients). According to this selection rule, the base point would have the maximum
component of LNM.When the point with the maximum component of LNM is not unique,
then arbitrary one among them can be chosen as the base point, and the di!erence caused
by di!erent base points with the same maximum component of LNM is negligible. To
illustrate the e!ect of this choice of base point on the NNMs, the FPU-model [16] with
N"3 are considered as follows:
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Via the aforementioned condition, for mode-1 and mode-3, the base point is taken as
(x

�
, y

�
), and for mode-2, the base point is taken as (x

�
, y

�
). The resulting NNM oscillators

are as follows respectively:
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Note: In transformation from equation (7) to (8), the corresponding NNM coe$cients a
��
's

and b
��
's can be easily obtained, so all are omitted here to save the space. In the rest of this

paper, these coe$cients are also omitted for the same reason.
On the other hand, if we choose the base point as (x

�
, y

�
) for all the three NNMs, the

corresponding NNM oscillators would be as follows:
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Obviously, the NNM oscillator equations in equation (8) are dramatically di!erent from
those in (9) and their forms appear very simple. These results indicate that, for quadratic
non-linear vibratory systems, when the point with the max-component of LNM is chosen as
the base point, the corresponding NNM oscillator equations would be very simple since the
quadratic terms vanished.

3.2. BASE POINTS VIA THE LNMs

The base points via the LNMs are the abstract points (u, v) such that the physical
co-ordinates can be expressed as (x

�
, y

�
)"(a

��
u, b

��
v), where a

��
(i"1,2 ,N) are the

LNM coe$cients. The LNMs are normalized to be norm-one. Here, two models are
illustrated: model (1) and model (7). Since model (1) is simpler than model (7) and there were
many results about it in the literatures, "rstly it is reinvestigated in more detail as
a comparison.
Via such a choice of the base points, the NNM oscillator equations of system (1) would

take the following forms:
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When the parameters in equation (1) take the values p
�
"g, p

�
"0, q"0, �"0, the

corresponding non-linear normal modal equations are as follows:

mode I u(
�
#ku

�
#

1

4
u�
�
g"0,

mode II u(
�
#(2k#1)u

�
#

1

4
u�
�
g"0. (12)

By comparison of the NNM oscillator equations (5) with equation (10), or equations (6)
with equation (12), it can be found that the forms of the NNM oscillator equations in
equations (10) or (12), which do not contain the velocity terms in it, are very simple. Another
important di!erence between equations (6) and (12) is that, when the parameter g'0, the
"rst oscillator in equation (6) may bifurcate statically, but the oscillators in equation (12)
cannot; in fact, even the original system cannot bifurcate statically. For NNM oscillators in
equation (12), the corresponding modal amplitude ratios can be computed as follows:
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where, unlike the results in equation [8], the modal amplitude ratios can be softening or
hardening depending not only on the value of the coupling sti!ness k but also on the
non-linearity g and the amplitude u. For example, when d
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Note that the boundary points d
�
and d

�
above are dependent on the amplitude u. As for

other cases it can be discussed similarly. These results indicate that the choice of
"xed-component base points may change the behaviors of the NNM oscillators and the
base points via the LNMs may be a better one.
To verify this observation further, FPU model (7) is analyzed as follows, with the same

choice of base points of NNMs as those in (10) and (12):
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Through the comparison of equations (9) and (14), it can be found that the latter is much
simpler than the former because the quadratic terms in it have all vanished. Through the
comparison of NNMs in equations (8) and (14), it seems that the choice of the abstract
points as the base points is not good. But after a more detailed investigation, it can be easily
found that the non-linearity in the NNMs oscillators of model (14) is more weak than those
of model (8). This means that model (14) is superior to model (8) in the further perturbative
solutions of NNMs oscillators. Similar to the second oscillator in equation (8), the second
NNM oscillator in (14) is also linear. This is a very interesting point that the NNM
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oscillator presents itself as a linear one! In fact, this linear mode describes an exact modal
motion of system (7). Another aspect that should be stressed is that, although the NNM
oscillators in equation (14) possesses some symmetry, for example, they are invariant
under the transformation that u

�
P 
u

�
, deduction cannot be made that the original physical

model also possesses such a symmetry. This is because the transformations between the
physical co-ordinates and modal co-ordinates are non-linear and do not possess such
a symmetry.

4. EFFECTS OF THE NORMALIZATION SCHEMES ON THE NNMs

4.1. ITH-COMPONENT-ONE SCHEME

The "rst normalization scheme is considered here, it is set as (x
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is chosen as the base point.
If each of the "rst-component of the LNMs is set to be one and the base points are chosen

via the LNMs, then the corresponding NNM oscillators of FPU model (7) are as follows:

mode I u(
�
#2)3431u

�
!��u

�
[0)253u�

�
#0)2547u� �

�
]"0,

mode II u(
�
#4u

�
"0, (15)

mode III u(
�
#13)6569u

�
!��u

�
[12)6601u�

�
#1)0468u� �

�
]"0.

From equations (14) and (15), it can be found that the forms of the NNM oscillator
equations are the same, only the coe$cients are di!erent. Similarly, the corresponding
NNM manifolds are also di!erent. To inspect the e!ects of normalization schemes on the
NNMs further, the determinants of the Jacobian of the linear part (i.e., the linear modal
matrixM

�
) of the non-linear modal transformation (3) corresponding to various base points

are computed and listed in Table 1.
For weakly non-linear systems, the determinants of the Jacobians of the NNM

transformations (3), (4) can be viewed as the error-ampli"cation factors. The determinants
of the matricesM

�
and Q

�
can be used as a measure of the main part of the error-transfer

relationships between the physical co-ordinates and the non-linear modal co-ordinates.
Since the numerical errors may be enlarged not only by forward transformation but also by
backward transformation, hence, the ideal normalization scheme is such that
min(abs(det(M

�
))#abs(det(M��
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))), i.e., abs(det(M
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))"1. As the number of d.o.f. of the
TABLE 1

Determinants of the ¸NM matrix

No. of equations Determinant

(5) !(��#4k�)/(k�)
(6) !4
(8) !8
(9) !32
(10) !1
(12) !1
(14) !1
(15) !32
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systems increases, the determinants corresponding to all the normalization schemes
excluding the norm-one scheme would become dramatically large [10] or small.

4.2. NORM-ONE SCHEME

This normalization scheme is set as �
�
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the a
��
's and b
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's are the coe$cients of the ith linear normal mode. The equations of the

NNMs oscillators are given above as (10), (12), (14), etc., and the determinants of the
corresponding LNMmatrices have been listed in Table 1. From Table 1 it can be seen that,
only with this normalization scheme the determinants are one in absolute value.

5. SIMULATION RESULTS AND REMARKS

For comparison of the e!ects of di!erent base points on the invariance of the non-linear
normal modal subspaces, model (1) and FPU-model (7) are investigated by simulation,
respectively. Here, for each model, two di!erent kinds of points, i.e., the "xed-component
point and abstract point via the LNMs are chosen as the base points of the NNMs. In all
cases, the simulations are over a time interval of [0, 20]. All the individual non-linear modal
phase manifolds are obtained by projection of the trajectory of the original model for
various initial conditions started on one of the NNMs with a speci"c energy. It should be
noted that the initial modal amplitudes of the NNMs have the same value which does not
mean that the original system would possess the same energy, in fact, they may have a very
di!erent energy. More precisely, all the comparisons here are based on the same initial
energy instead of the same initial non-linear modal amplitude. The expression of the
potential energy (PE) for system (1) is as follows:
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Similarly, the potential energy for system (7) is given as follows:
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The speci"c values of the initial energy are taken here purely for convenience. All the
simulation results are presented in Tables 2}4 for various cases, where PE

�
means the

potential energy of the ith NNM.
From Figure 1 and Table 2, it can be seen that the amplitudes and therefore the

corresponding maximal energy of the non-initial-excited NNMs in (a) and (b) are much
larger than those in Figures 1(c) and 1(d). These results indicated that the choice of abstract
base point via the LNM is better than those of "xed-component base point.
From Figure 2 and Table 3, it can be found that the amplitudes and the corresponding

maximal energy of the non-initial-excited NNMs in (e) and (f ) are smaller than those in
Figures 2(g) and 2(h). This may be caused by the asymmetry of the original system
(i.e., p

�
Op

�
). It is indicated that the "xed-component base point is superior to the abstract

base point. For a thorough comparison more the cases approximated to "fth order are also
simulated, see Figure 3 and Table 3; the results indicated that, these two choices of base
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Simulation results of the model (1) with parameters k"1, p
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��
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��
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)

Figure 1(a) Figure 1(c)
Initial conditions on the "rst NNM (1, 0, 0)899, 0) (0)9991, 0, 0)9004, 0)
Initial energy PE

�
"0)3381 PE
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"0)3381

Initial modal amplitude u
�
"1)0 u
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Figure 1(b) Figure 1(d)
Initial conditions on the second NNM (1, 0, !1)053, 0) (0)9922, 0, !1)06, 0)
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"7)32

Initial modal amplitude u
�
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Figure 2(e) Figure 2(g)
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Figure 3(el) Figure 2(g)
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Initial energy PE

�
"0)1528 All as given above

Initial modal amplitude u
�
"1)167

Maximal energy of the second NNM PE
�
"2)55�10
�
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Figure 3(e[5]) Figure 3(g[5])
Initial conditions on the "rst NNM (1, 0, 1)182, 0) (1)004, 0, 1)18, 0)
Initial energy PE
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Figure 3(f [5] Figure 3(h[5])
Initial conditions on the second NNM (1, 0, !0)8274, 0) (0)9986, 0, !0)829, 0)
Initial energy PE
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Initial modal amplitude u
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points are almost identical. On the other hand, when the point (x
�
, y

�
) instead of (x

�
, y

�
) is

chosen as the base point, the results showed that the abstract base point is much better than
the "xed-component base point, see also Figure 3 and Table 3.



TABLE 4

Simulation results of model (7) with parameters �"0)25

Approximated to third accuracy Base point (x
�
, y

�
) Base point (�

�
a
��
x
�
, �

�
b
��
y
�
)

Figure 4(i) Figure 4(1)
Initial conditions on the "rst NNM (1, 0, 1)172, 0, 1)172, 0) (1)076, 0, 1)21, 0, 0)6967, 0)
Initial energy PE

�
"!1)13 PE

�
"!1)13

Initial modal amplitude u
�
"1)0 u

�
"1)742

Figure 4(j) Figure 4(m)
Initial conditions on the second NNM (1, 0, 0, 0, !1, 0) (!0)9226, 0, 0, 0, 0)9226, 0)
Initial energy PE

�
"1)833 PE

�
"1)833

Initial modal amplitude u
�
"1)0 u

�
"!1)305

Figure 4(k) Figure 4(n)
Initial conditions on the third NNM (1, 0, !1)1, 0, 0)75, 0) (1)041, 0, !1)144, 0, 0)69, 0)
Initial energy PE

�
"6)186 PE

�
"6)186

Initial modal amplitude u
�
"1)0 u

�
"1)674
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When approximated to "fth order, the non-linear modal oscillators of system (1) would
be as follows:

mode I u(
�
#u

�
#0)125u�

�
!0)015625u�

�
!0)0234375u�

�
uR �
�
"0,

mode II u(
�
#3u

�
#0)125u�

�
#0.018u�

�
#0)0054u�

�
uR �
�
"0. (18)

Note that the "fth order terms containing the velocity in (18) does not vanish. This might
mean that some new base point should be chosen to eliminate the velocity terms.
To further investigate the e!ects of the base points on the invariance of the NNMs, model

(7) with parameter �"0)25 is simulated for various cases. See Figure 4 and Table 4. These
results veri"ed that the choice of abstract base point via the LNM is superior to the choice
of "xed-component base point.

6. CONCLUSIONS

For the conservative vibratory systems, based on the analysis and simulation results
above, our conclusions are as follows:

1. The forms of NNM oscillators depend dramatically on the choice of base points. The
best base points may be those that are determined via the corresponding linear normal
modes. With such base points, the qualitative properties of the non-linear modal
system are maintained very well in accordance with the original system and a better
invariance of the NNMs is also maintained.

2. Di!erent normalization schemes would lead to di!erent forward and backward
transformations, which in turn lead to distinct error-transfer relationships. Especially
for large d.o.f.s systems, the e!ects would be more remarkable. The best normalization
scheme is the norm-one scheme.

3. It can be anticipated that both localized and non-localized modes could be treated
in a universal way with the choice of abstract base point via the LNM. For
damped vibratory systems, the normalization schemes would a!ect the NNMs in
the same way as the one mentioned above. For continuous medium systems, the base
points and normalization schemes would operate in the same way as in the discrete
systems.



Figure 1. E!ects of the base points on the invariance of the non-linear normal modal subspaces of the model (1)
with the parameters k"1, p

�
"p

�
"0)5, q"�"0)3, studied by simulation; all of them are non-linear normal

phase manifolds obtained by projection of the trajectory for di!erent initial conditions, energy and base points:
(a) [base point, initial condition, energy]"["rst component point, "rst NNM, 0)3381]; (b) [base point, initial
condition, energy]"["rst component point, second NNM, 7)32]; (c) [base point, initial condition, energy]"
[abstract point, "rst NNM, 0)3381]; (d) [base point, initial condition, energy]"[abstract point, second NNM,
7)32].
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Figure 2. E!ects of the base points on the invariance of the non-linear normal modal subspaces of the model (1)
with the parameters k"1, p

�
"g"0)5, p

�
"q"�"0 (i.e., example 2 of reference [8]), studied by simulation; all

of them are non-linear normal phase manifolds obtained by projection of the trajectory for di!erent initial
conditions, energy and base points: (e) [base point, initial condition, energy]"["rst component point, "rst NNM,
0)1528]; (f ) [base point, initial condition, energy]"["rst component point, second NNM, 3)393]; (g) [base point,
initial condition, energy]"[abstract point, "rst-NNM, 0)1528]; (h) [base point, initial condition, energy]"
[abstract point, second NNM, 3)393].
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Figure 3. Same as Figure 2 above except that (e1) [base point, initial condition, energy]"[second-component
point, "rst-NNM, 0)1528]; (f1) [base point, initial condition, energy]"[second-component point, second NNM,
3)393]; for (e[5]), (f [5], (g[5]) and (h[5]), the NNMs are approximated to "fth order; (e[5]) the second non-linear
normal phase manifold, [base point, initial condition, energy]"["rst-component point, "rst-NNM, 0)1581];
(f [5]) the "rst non-linear normal phase manifold, [base point, initial condition, energy]"["rst-component point,
second NNM, 3)464]; (g[5]) the second non-linear normal phase manifold, [base point, initial condition,
energy]"[abstract point, "rst NNM, 0)1581]; (h[5]) the "rst non-linear normal phase manifold, [base point,
initial condition, energy]"[abstract point, second NNM, 3)464].
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Figure 4. E!ects of the base points on the invariance of the non-linear normal modal subspaces of the FPU-2
model (7) with the parameters �"0)5, studied by simulation; all of them are non-linear normal phase manifolds
obtained by the projection of the trajectory for di!erent initial conditions, energy and base points: (i) [base point,
initial condition, energy]"["rst component point, "rst-NNM, !1)13]; ( j) [base point, initial condition,
energy]"["rst-component point, second-NNM, 1)833]; (k) [base point, initial condition, energy]" ["rst-
component point, third-NNM, 6)186]; (1) [base point, initial condition, energy]"[abstract point, "rst NNM,
!1)13]; (m) [base point, initial condition, energy]"[abstract point, second-NNM, 1)833]; (n) [base point, initial
condition, energy]"[abstract point, third NNM, 6)186].
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Figure 4. Continued.
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APPENDIX A: THE COEFFICIENTS OF THE NON-LINEAR NORMAL MODES

When the parameters take the values �"0, p
�
"g, p

�
"0, q"0, the coe$cients of the

NNMs are as follows (with abstract base points)

Mode I

a
��

"a
��

"a
	�

"a
��

"a
��

"a
��

"b
��

"b
��

"b
	�

"b
��

"b
��

"b
��

"0, i"1,2,

a
��

"!a
��

"!

�2g(k! 3)

16k(k! 4)
, a

��
"!a

��
"b

��
"!b

��
"

3�2g
16k (k! 4)

,

b
��

"!b
��

"!

3�2g(k!1)

16k(k!4)
.
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Mode II

a
��

"a
��

"a
	�

"a
��

"a
��

"a
��

"b
��

"b
��

"b
	�

"b
��

"b
��

"b
��

"0, i"1, 2,

a
��

"a
��

"

�2g(7k#3)

16k(9k#4)
, a

��
"a

��
"b

��
"b

��
"

3�2g
16k(9k#4)

,

b
��

"b
��

"

3�2g(3k#1)

16k(9k#4)
.

APPENDIX B: THE COEFFICIENTS C
��
OF THE NON-LINEAR NORMAL MODAL

EQUATIONS

c
��

"(!44��kp
�
�#8��kq��!78��kp

�
��#42��k� p

�
#26��kp

�
��

!208��kq�#148��k�p
�
#416�k��q#96�k� p

�
!10�k��p

�

!96�kp
�
�!800�kq��!152�kp

�
��#62�k�� p

�
#384�k�q#56�kp

�
��

!168��k�q#10��kp
�
�!416q�	!128q��!17����p

�
!32�	�q!8�	� p

�

#8�	p
�
�!48��kp

�
#192��kq!48��kp

�
!208�q�	!26���p

�
#28�p

�
��

!192�q��#78���p
�
!76���p

�
!31��	p

�
#32��p

�
!32��p

�
#400���q

#5��	p
�
!8�	kp

�
#32�	kq!8�	kp

�
!48��kp

�
#192��kq!48��kp

�

#832��kq!48��kp
�
#52��kp

�
#52��kp

�
!18�	kp

�
#256�kq!18�	kp

�

!48��kp
�
!800��kq!288�	kq#188����q#26���p

�
!9����p

�

!296���q#26���p
�
!9����p

�
!76����q#26����p

�
!22���p

�

!78����p
�
#74���p

�
!296���q#312����q#35����p

�
!16��p

�

!26�	p
�
!26�	p

�
#26��p

�
#9��p

�
#144��q#9��p

�
!16��p

�
!24��p

�

!24��p
�
#96��q#400��q#64��q#26��p

�
!16��p

�
!16��p

�
#4��p

�

#4��p
�
!16��q)/(4��(!26��k#48�k!4��#18��k!52�k#48k#8��k

!9��#26��!26�#16#13���!26��#24�)).

The above expression is used for the computation of the coe$cient c
��
of the "rst-NNM

equation in equation (10). The expression for the coe$cient c
��
of the second-NNM

equation is the same as the one above except that the parameter � should be replaced
by &&!�''.
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